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The Peetre K-functionals and the generalized Riesz summability operators are
introduced. The convergence and boundedness of the Riesz operators are discussed.
The equivalent relationships of the Peetre K-functionals and the Riesz operators are
established. � 1999 Academic Press

1. INTRODUCTION AND NOTATIONS

Let Lp [&1, 1], 1�p<�, denote the spaces of the Lebesgue integrable
functions on [&1, 1], and let C[&1, 1] denote the space of the con-
tinuous functions on [&1, 1], with the norms

& f&p :={|
1

&1
| f (x) |p dx=

1�p

, for f # Lp [&1, 1], and

& f&� := sup
&1�x�1

| f (x) |, for f # C[&1, 1],

respectively. In the following, Lp[&1, 1] will always be one of the spaces
Lp [&1, 1] for 1�p<�, or C[&1, 1] for p=�. Let 6n be the class of
polynomials of degree �n. The best polynomial approximant of degree n
of f # Lp [&1, 1] is defined by

En ( f )p :=inf[& f&pn &p : pn # 6n ].

Z. Ditzian and V. Totik [4, Chap. 7] constructed a polynomial pn # 6n

satisfying

& f&pn&p�Kr, .( f , n&r)p , (1.1)
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where the Peetre K-functional Kr, . ( f , n&r)p with weight .(x)=- 1&x2 is
defined by

Kr, .( f , tr)p :=inf[& f&g&p+tr&.r g(r)&p : g # C r[&1, 1]] . (1.2)

Result (1.1) implies that

En ( f )p�Kr, . ( f , n&r)p .

The Peetre K-functional is a very useful tool for estimating the rate of
convergence of linear operators. Recently, Z. Ditzian and K. Ivanov [3]
and V. Totik [6, 7], etc., considered some strong converse inequalities of
approximation by linear operators. Their results show that the order for
approximation by some linear operators is completely characterized by the
corresponding K-functional, which is equivalent to the some moduli of
smoothness. For example, for Bernstein operators

Bn ( f , x) := :
n

k=0

f \k
n+ bn, k (x), bn, k (x)=\n

k+ xk(1&x)n&k,

V. Totik [7] has proved that

& f&Bn ( f )&C[0, 1] &K2, . ( f , n&1)�, (1.3)

where the weight function .(x)=- x(1&x), and A&B means there exists
a positive constant ``const'' such that (1�const) A�B�const A. In this
paper, we denote ``const'' an absolute positive constant which is dependent
only on the parameters indicated by the index.

For Bernstein�Durrmeyer operators

Mn ( f , x) :=
1

n+1
:
n

k=0

bn, k (x) |
1

0
bn, k (y) f (y) dy,

W. Chen et al. [1] proved that

& (Mn&I)r f&Lp[0, 1] &K2r ( f, n&r)p , (1.4)

where I is the identity and the Peetre K-functional is defined by

K2r ( f, n&2r)p :=inf[& f&g&Lp [0, 1]

+n&2r&P1 (D)r g&Lp [0, 1] : g # C 2r[0, 1]],

and the differential operator P1 (D) :=(d�dx) x(1&x)(d�dx).
In his paper, Z. Ditzian [2] considered the Riesz summability operators

Rn for Fourier�Legendre expansions. Let Pk (x) be the Legendre polynomials,
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and let differential operator P(D) :=(d�dx) (1&x2)(d�dx). The formal
Fourier�Legendre expansion of f # L1 [&1, 1] is given by

f (x)t :
�

n=0

f7(n) Pn (x), (1.5)

where f7(n) is the Legendre transform of f defined by

f7(n) :=( f, Pn )=|
1

&1
f ( y) Pn (y) dy, n=0, 1, ... .

For series (1.5) Z. Ditzian [2] defined the Riesz operators

Rn ( f, x) := :
n

k=0
\1&

k(k+1)
n(n+1) + f7 (k) Pk (x),

and proved that

& (Rn&I)r f&p&K2r ( f , n&2r)p , (1.6)

where I is the identity and the Peetre K-functional is given by

K2r ( f , t2r)p :=inf[& f&g&p+t2r &P(D)r g&p : g # C 2r[&1, 1] ]. (1.7)

Combining (1.4) with (1.7) yields the inequality

En ( f )p�constp& (Mn2&I)r f&p , 1�p��, r�1.

The aim of the paper is to consider the generalized Riesz summability
operators

Rn, r ( f , x) := :
n

k=0
\1&\k(k+1)

n(n+1) +
r�2

+ f7 (k) Pk (x), r�1, n=0, 1, ...

(1.8)

We will establish the equivalence

&Rn, r f&f&p &K( f , n&r; Lp , W r
p ). (1.9)

The definition of the Peetre K-functional K( f , n&r; Lp , W r
p ) will be given

in Section 2.

Remark. The equivalence result (1.9) is different from that of (1.6) in
two respects. We deal with Rn, r&I instead of the power of the operators
(Rn&I)r and the r in our definition is not restricted to be natural numbers.
The proof follows closely that of [2], presented by Z. Ditzian.
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2. A PEETRE K-FUNCTIONAL FOR
FOURIER�LEGENDRE EXPANSIONS

Let P(D)=(d�dx)(1&x2)(d�dx). The Legendre polynomials Pk (x) are
given by

P(D) Pk (x)=&k(k+1) Pk (x),

and satisfy the orthonormality condition

(Pk , Pm) =|
1

&1
Pk (x) Pm (x) dx=$k, m .

See [5] for more details.
We deduce the fractional derivative for the expansion (1.5). Let

Dr :=&(&P(D))r�2 be the power of the operator P(D) given by the relation

DrPk (x)= &(k(k+1))r�2 Pk (x). (2.1)

Let

W r
p :=[ f # Lp[&1, 1] : _g # Lp [&1, 1] % \k # N0 , g7(k)

=&(k(k+1))r�2 f7 (k)].

Therefore if f # W r
p has the formal Fourier�Legendre expansion (1.5)

f (x)t :
�

k=0

f7(k) Pk (x),

then Dr f # Lp [&1, 1] and has the following formal Fourier�Legendre
expansion

Dr f (x)t :
�

k=0

[&(k(k+1))r�2 ] f7(k) Pk (x).

The Peetre K-functional between Lp [&1, 1] and W r
p is then defined by

K( f, tr; Lp , W r
p ) :=inf[& f&g&p+tr&Drg&p , g # W r

p ]. (2.2)

Since W r
p is dense in Lp [&1, 1] we have K( f , tr; Lp , W r

p ) � 0 as t � 0. It
is suitable to measure the rate of convergence of the generalized Riesz
summability operators by the Peetre K-functional K( f , tr; Lp , W r

p ).

3. EQUIVALENCE RESULTS

The following equivalence relation is a strong converse inequality in the
sense of [3].
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Theorem 1. Let f # Lp [&1, 1], 1�p��, and let Rn, r ( f, x) and
K( f, n&r; Lp , W r

p ) be defined by (1.8) and (2.2), respectively. We have the
equivalence relation

&Rn, r f&f&p&K( f, n&r; Lp , W r
p ). (3.1)

In order to prove the theorem we give the following three lemmas.

Lemma 1. Let 1�p��, and let Rn, r be defined by (1.8). Then Rn, r is
of type (p, p), i.e.,

&Rn, r f&p�constp, r& f&p , f # Lp [&1, 1]. (3.2)

Proof. If r=2, Z. Ditzian [2] gave a proof for (3.2). If r{2, we can
deduce (3.2) from theorem 3.9 in [8] by using multiplier theory. Let

Jk f (x)=f7(k) Pk (x).

Then [Jk ]�
k=0 is a total, fundamental system of mutually orthogonal pro-

jections satisfying

& (C, 1)n f&p�constp& f&p , f # Lp [&1, 1],

where (C, 1)n ( f , x) is the Cesa� ro means

(C, 1)n ( f , x) := :
n

k=0
\1&

k
n+ f7(k) Pk (x).

In order to verify (3.2), we use Theorem 3.9 of [8] and choose j=1,
8(t)=9(t)=t(t+1) and e(x)=1&xr�2 for 0�x�1 or e(x)=0 for x>1.
We have to show that e(x) satisfies ��

0 x2 |de"(x) |<�. This is easy to
check. In fact, we have

|
�

0
x2 |de"(x) |=

1
4

r |r&2 | |
1

0
xr�2 dx=

r |r&2 |
2(r+2)

<�.

Therefore all the conditions in Theorem 3.9 of [8] are satisfied. Then
[1&(k(k+1)�n(n+1))r�2 ]n

k=0 is a family of uniformly bounded multipliers
on Lp[&1, 1]. This completes the proof of (3.2).

As a corollary of Lemma 1, we have limn � �&Rn, r f&f&p=0 for all
f # Lp [&1, 1]. That is to say [Rn, r] is an approximation process on
Lp [&1, 1].
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Similarly to [2], we obtain the following lemma which gives the rela-
tionships between the Riesz summability operators Rn, r and the differential
operator Dr.

Lemma 2. Let f # Lp [&1, 1], 1�p��, and let Rn, r f be defined by
(1.8). Then

(n(n+1))r�2 Rn, r (Rn, r f&f )=DrRn, r f. (3.3)

Proof. We first note that for f # Lp [&1, 1] there holds

Rn, r (Rn, r f&f )=&
1

(n(n+1))r�2

_ :
n

k=0
\1&\k(k+1)

n(n+1)+
r�2

+ (k(k+1))r�2 f7(k) Pk (3.4)

for 0�k�n. By the definition of Dr we have

DrPk (x)= &(k(k+1)r�2 Pk (x).

It follows that

DrRn, r ( f , x)=& :
n

k=0
\1&\k(k+1)

n(n+1)+
r�2

+ (k(k+1))r�2 f7(k) Pk(x).

Combining this equation with (3.4) we get

(n(n+1))r�2 Rn, r (Rn, r f&f )=DrRn, r f .

Lemma 2 is proved.

For a given function in W r
p we have the Jackson-type inequality by

following an idea of Ditzian [2].

Lemma 3. Let f # W r
p , 1�p��, and let Rn, r f be defined by (1.8). Then

&Rn, r f&f&p�
constp, r

nr &Drf&p . (3.5)

Proof. For f # Lp [&1, 1] we have from (3.3) in Lemma 2

R2
n, r f&Rn, r f=

1
(n(n+1))r�2 DrRn, r f.
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By direct calculations, we know that Dr and Rn, r commute, that is,

DrRn, r f=Rn, rDr f , f # W r
p , (3.6)

and for all n, m,

Rm, r Rn, r f=Rn, r Rm, r f , f # Lp [&1, 1].

Furthermore

R2
m, r f&Rm+1, r Rm, r f= &

(m+2)r�2&mr�2

(m(m+1)(m+2))r�2 DrRm, r f ,

and

R2
m+1, r f&Rm, r Rm+1, r f=

(m+2)r�2&mr�2

(m(m+1)(m+2))r�2 DrRm+1, r f .

Note that (m+2)r�2&mr�2&rm (r�2)&1 as m � �. It follows that

&R2
n, r f&R2

m+1, r f&p�
constp, r

mr+1 (&Dr Rm, r f&p +&Dr Rm+1, r f&p ).

Hence Lemma 1 and (3.6) yield for f # W r
p that

&R2
n, r f&R2

m+1, r f&p�
constp, r

mr+1 (&Dr f&p .

Lemma 1 and (3.6) also imply &R2
n, r f&f&p � 0 as n � �, we have

&R2
n, r f&f&p� :

�

m=n

&R2
m, r f&R2

m+1, r f&p .

We finally get Jackson's estimate for f # W r
p

&Rn, r f&f&p�&R2
n, r f&Rn, r f&p+ :

�

m=n

&R2
m, r f&R2

m+1, r f&p

�constp, r \ 1
(n(n+1))r�2+ :

�

m=n

1
mr+1 +&Dr f&p

�
constp, r

nr &Dr f&p .

Lemma 3 is proved.
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Proof of Theorem 1. Let f # Lp [&1, 1]. Choose g # W r
p such that

& f&g&p+n&r &Drg&p�2K( f , n&r; Lp , W r
p ).

We get

&Rn, r f&f&p�&Rn, r ( f&g)&( f&g)&p+&Rn, r g&g&p

�constp, r K( f , n&r; Lp , W r
p )+&Rn, rg&g&p .

By making use of Lemma 3, we have

&Rn, rg&g&p�
constp, r

nr &Drg&p�constp, rK( f , n&r; Lp , W r
p ).

Combining the inequalities above we get

&Rn, r f&f&p�constp, r K( f , n&r; Lp , W r
p ).

To prove the converse result, by making use of Lemmas 2 and 3 we have

&DrRn, r f&p�constp, r nr&Rn, r f&f&p , f # Lp [&1, 1].

It follows from the definition of K-functional that

K( f , n&r; Lp , W r
p )�& f&Rn, r f&p+n&r&DrRn, r f&p

�constp, r &Rn, r f&f&p .

The proof of Theorem 1 is complete.

From Lemma 2 and the proof of Theorem 1 we deduce that

&Rn, r f&f&p+n&r &DrRn, r f&p &K( f , n&r; Lp , W r
p ).

This equivalence relationship shows that the Rn, r f can serve as a realiza-
tion of the K-functional K( f , n&r; Lp , W r

p ).
We now present the relationships between the best polynomial approxi-

mant and the generalized Riesz summability operators.

Theorem 2. Let f # Lp [&1, 1], 1�p��, and let Rn, r f be defined by
(1.8). Then

En ( f )p�&Rn, r f&f&p .
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conversely,

&Rn, r f&f&p�
constp, r

nr :
0�k�n

(k+1)r&1 Ek ( f )p .

Proof. The first inequality is obvious. Concerning the second one, we
have to show the following Bernstein type inequality

&DrQn&p�constp, r nr&Qn&p ,

where Qn is a polynomial of order n.
In fact, if Qn is a polynomial of order n, we can write Qn as

Qn (x)= :
n

k=0

Q7
n (k) Pk (x).

By the definition of Dr, we get DrQn (x)=&�n
k=0 (k(k+1))r�2 Q7

n (k)
Pk (x). Then the Bernstein type inequality is of the form

" :
n

k=0

(k(k+1))r�2 Q7
n (k) Pk"p

�constp, r (n(n&1)r�2" :
n

k=0

Q 7
n (k) Pk"p

.

This is Corollary 5.15 of [8]. The proof of Theorem 2 is complete.

By this theorem and Theorem 1 we have

Theorem 3. Let f # Lp [&1, 1], 1�p��, and let Rn, r f be defined by
(1.8). Then

En ( f )p�constp, r K( f , n&r; Lp , W r
p ).

conversely,

K( f , n&r; Lp , W r
p )�

constp, r

nr :
0�k�n

(k+1)r&1 Ek ( f )p .
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