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The Peetre K-functionals and the generalized Riesz summability operators are
introduced. The convergence and boundedness of the Riesz operators are discussed.
The equivalent relationships of the Peetre K-functionals and the Riesz operators are
established.  © 1999 Academic Press

1. INTRODUCTION AND NOTATIONS

Let L,[ —1,1],1<p <, denote the spaces of the Lebesgue integrable
functions on [ —1,1], and let C[ —1,1] denote the space of the con-
tinuous functions on [ —1, 1], with the norms

1 lp
Ap={] swlar} T for fer,[-113 and
floi= swp 1/ for feC[—L1].

—I<x<l1

respectively. In the following, L,[ —1, 1] will always be one of the spaces
L,[—1,1]for 1<p<oo, or C[—1,1] for p=co. Let 11, be the class of
polynomials of degree <n. The best polynomial approximant of degree n
of fe L,[ —1, 1] is defined by

E, (/) :=f{|f=p,l,:pnell,}.

Z. Ditzian and V. Totik [4, Chap. 7] constructed a polynomial p,e I,
satisfying

Hf_anpgKr,(p(f’nir)ps (11)
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PEETRE K-FUNCTIONALS AND RIESZ OPERATORS 113

where the Peetre K-functional X, ,( f, n™"), with weight ¢(x) =./1 —x2is
defined by

K, o (f. 1), =inf{|| f—gl,+ " ll¢"g"],:ge C'[ -1, 11}. (12)

Result (1.1) implies that

En(f)p <Kr,¢(f’ n_r)p'

The Peetre K-functional is a very useful tool for estimating the rate of
convergence of linear operators. Recently, Z. Ditzian and K. Ivanov [3]
and V. Totik [6, 7], etc., considered some strong converse inequalities of
approximation by linear operators. Their results show that the order for
approximation by some linear operators is completely characterized by the
corresponding K-functional, which is equivalent to the some moduli of
smoothness. For example, for Bernstein operators

R T W T E N R R G PTEVEE

V. Totik [ 7] has proved that

”f_Bn(f)HC[O,l]:K2,(p(f9n71)oo’ (L.3)

where the weight function ¢(x)=./x(1 —Xx), and 4 ~ B means there exists
a positive constant “const” such that (1/const) 4 < B<const A. In this
paper, we denote “const” an absolute positive constant which is dependent
only on the parameters indicated by the index.

For Bernstein—-Durrmeyer operators

M,(f, x):=

1
,m Z k(%) | Bui(0)00) dy.

W. Chen et al. [1] proved that
(M, —1D)" f“LP[O,l]:Kh(ﬂ n"")p, (1.4)
where [ is the identity and the Peetre K-functional is defined by
Ko (fon=2), i=inf{ | f =gl 1,011
+n_2'|\P1(D)’gHLP[0’1] :ge C¥0, 11},
and the differential operator P, (D) :=(d/dx) x(1 — x)(d/dx).

In his paper, Z. Ditzian [ 2] considered the Riesz summability operators
R, for Fourier—Legendre expansions. Let P, (x) be the Legendre polynomials,
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and let differential operator P(D):=(d/dx) (1 —x?)(d/dx). The formal
Fourier-Legendre expansion of fe L;[ —1, 1] is given by

f(x)~ Y f*(n) P,(x), (15)

where f*(n) is the Legendre transform of f defined by

Pi=CAPD =[S0 =01,

For series (1.5) Z. Ditzian [2] defined the Riesz operators

. - k(k+1
Ry(foxi= ¥ (1=000 ) 0 Py,
and proved that
H(Rn_l)erszZr(f!n_2r)p’ (16)

where 7 is the identity and the Peetre K-functional is given by
Ko (f,17), :=inf{| f—gl,+ ¢ |P(D) gll,:ge C¥[-1,11}. (L.7)
Combining (1.4) with (1.7) yields the inequality
E,(f),<const,|[(M,.—1I)fl,, l<p<o,rz=L

The aim of the paper is to consider the generalized Riesz summability
operators

k(k+1)
nn+1)

>r/2>fA (k) Pp(x), r=1, n=0,1,..
(1.8)

Ry (fx)i= 3 (1-(

We will establish the equivalence
IR, f=Sp,=K(f,n™" L,, W}). (1.9)

The definition of the Peetre K-functional K(f,n~"; L,, W) will be given
in Section 2.

Remark. The equivalence result (1.9) is different from that of (1.6) in
two respects. We deal with R, ,—1 instead of the power of the operators
(R,,—I)" and the r in our definition is not restricted to be natural numbers.
The proof follows closely that of [2], presented by Z. Ditzian.
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2. A PEETRE K-FUNCTIONAL FOR
FOURIER-LEGENDRE EXPANSIONS

Let P(D)=(d/dx)(1 —x?)(d/dx). The Legendre polynomials P, (x) are
given by
P(D) Pi(x) = —k(k+1) Pi(x),
and satisfy the orthonormality condition

(P Py = [ Pulx) Py(x) dx =0y,

See [5] for more details.
We deduce the fractional derivative for the expansion (1.5). Let
9" := —( — P(D))"* be the power of the operator P(D) given by the relation

D"Pr(x)= — (k(k+1))7 Py(x). (2.1)
Let
Wi ={feL,[—1,1]1:3geL,[ —1,1]3VkeN,, g" (k)
= —(k(k+1))" 1~ (k)}.
Therefore if fe W, has the formal Fourier-Legendre expansion (1.5)
f(x)~ 2 [ (k) Pi(x),
k=0

then 2"feL,[ —1,1] and has the following formal Fourier-Legendre

expansion

Zf(x)~ 3 [ —(k(k+ 1)1 f* (k) Pr(x).

The Peetre K-functional between L,[ —1, 1] and W is then defined by
K(f, 5L, Wy) :=inf{ | f—gl,+1"12'gl,, ge W} (2.2)

Since W, is dense in L,[ —1, 1] we have K(f, ¢"; L,, W,)—>0as t—0. It
is suitable to measure the rate of convergence of the generalized Riesz
summability operators by the Peetre K-functional K(f, ¢"; L,, W ).

3. EQUIVALENCE RESULTS

The following equivalence relation is a strong converse inequality in the
sense of [3].
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TaeoreMm 1. Let feL,[—1,1],1<p<oo, and let R, . (f x) and
K(f,n=" L,, W) be defined by (1.8) and (2.2), respectively. We have the
equivalence relation

IRy, f =S, ~K(f;n™"5 Ly, W) (3.1)
In order to prove the theorem we give the following three lemmas.
LemMa 1. Let 1 <p< oo, and let R, , be defined by (1.8). Then R, , is
of type (p, p), ie.,
IR, fl,<const, [ fll,,  feL,[—11] (3.2)

Proof. 1If r=2, Z. Ditzian [2] gave a proof for (3.2). If r#2, we can
deduce (3.2) from theorem 3.9 in [ 8] by using multiplier theory. Let

Jef(x) =" (k) Pi(x).

Then {J,} 7, is a total, fundamental system of mutually orthogonal pro-
jections satisfying

I(C, 1), fll, <const,|| fll,,  feL,[—1,1],

where (C, 1), (f, x) is the Cesaro means

s k
(C 1), (fix):=} <1 —n> S (k) Pr(x).

In order to verify (3.2), we use Theorem 3.9 of [8] and choose j=1,
D(t)=P(t)=t(t+1)and e(x)=1—x"*for 0<x <1 or e(x)=0 for x> 1.
We have to show that e(x) satisfies [¢° x?|de”(x)| < co. This is easy to
check. In fact, we have

rlr—2|
/<<

2r+2) "

et Zdn _1 2 1r/2al_
jo x|e(x)|—4r|r— |f0x X =

Therefore all the conditions in Theorem 3.9 of [8] are satisfied. Then
{1—(k(k+1)/n(n+1))72}%_, is a family of uniformly bounded multipliers
on L,[ —1,1]. This completes the proof of (3.2).

As a corollary of Lemma 1, we have lim,_, ,||R, ,.f—f|,=0 for all
feL,[—1,1]. That is to say {R,,} is an approximation process on
L[—1,1].

P b
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Similarly to [2], we obtain the following lemma which gives the rela-
tionships between the Riesz summability operators R, , and the differential
operator "

Lemma 2. Let feL,[ —1,1], 1<p< oo, and let R, .f be defined by
(1.8). Then

(n(n+ 1))r/2 Rn,r(Rn,rf_f):@ar,rf: (33)
Proof.  We first note that for fe L,[ —1, 1] there holds
1

(n(n+1))"

3 k(k +1)\ 7 o
Xk§0<1_<l’l(l’l+l)> >(k(k+1))/f(k)Pk (3.4)

Rn,r(Rn, rf_f) = -

for 0 <k <n. By the definition of 2" we have
DP(x)= — (k(k+1)7 Py(x).
It follows that

k(k+1)
n(n+1)

TR, fx)= = T (1-( )/> (Kl + 1) £ () Py(x).

Combining this equation with (3.4) we get
(n(n+ 1) R, (R, ,f~f)=Z'R, .[.
Lemma 2 is proved.

For a given function in W7 we have the Jackson-type inequality by
following an idea of Ditzian [2].

Lemma 3. Let fe W;, 1<p< 0, and let R, , f be defined by (1.8). Then

const, , ,
IR, S =, < ol A (3.5)

nr

Proof. For feL,[ —1,1] we have from (3.3) in Lemma 2

Rﬁ r f_ Rn, rf: r/2 @ar, rf‘

(n(n+1))
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By direct calculations, we know that " and R, , commute, that is,
DR f= R, DS, fEW, (36)
and for all n, m,
Ror Ry of =Ry, Ry ofn  feL,[—1.1].
Furthermore

(m+2)"?—m"?
(m(m+1)(m +2))7?

ern,rf‘_Rm+l,rRm,rf: - @rRm,rfa

and

(m—+2)"2—m"
m(m+1)(m+2))"

an+1,rf_Rm,rRm+1,rf=( @rRm+1,rf'

Note that (m+2)"? —m"? ~rm™~! as m — oo. It follows that

COl’lSt .
IR =R 1S, < ,+1 “(12" Ry o fllp 127 Ry, o S 1)-

Hence Lemma 1 and (3.6) yield for fe W7, that

const,, .
IR: . f=R2 1 S, < ,H “(127 11,

Lemma 1 and (3.6) also imply HRﬁ, S=fl,—0asn— oo, we have

RS S=fl,< X IR, f=Ro o, S

We finally get Jackson’s estimate for f'e W),

IR, f—fll,<IR:,f—R, . fll,+ Y IR. . [—Ry 1. [,
) 1 -
+ ) W>|9f|p

1
<(n(n+ DD
const

<——= 1211,

<const, ,

Lemma 3 is proved.
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Proof of Theorem 1. Let fe L,[ —1,1]. Choose ge W’ such that
If=gl,+n~"|27gl,<2K(f,n"" L,, Wp).
We get

IR nf =S llp <Ry (f=8) = (f=&)p+ IR, g =21,
<C()nStp,r K(f; n_r; Lp; W;) + HRn,rging'

By making use of Lemma 3, we have

const , , _, -
HRn,rg_ng< an’ H@ ngSCOHStp,,K(f,n ;Lpﬂ Wp)

Combining the inequalities above we get
IR, .f—f,<const, , K(f,n~"; L, W5).
To prove the converse result, by making use of Lemmas 2 and 3 we have
|Z"R,, [l ,<const,, n"|R, . f—fl,, feL,[—1,1].
It follows from the definition of K-functional that
K(f,n™ " Ly, W) <If=R,  fll,+n7"IIZ"R,, . f1l,
<const, , [R, .f—[1,.

The proof of Theorem 1 is complete.

From Lemma 2 and the proof of Theorem 1 we deduce that
IR, f=fll,+n""|Z"R,, S, ~K(f, 07" Ly, W)
This equivalence relationship shows that the R, ,f can serve as a realiza-
tion of the K-functional K(f,n™"; L,, W7).

We now present the relationships between the best polynomial approxi-
mant and the generalized Riesz summability operators.

THEOREM 2. Let feL,[ —1,1], 1<p< oo, and let R, ,f be defined by
(1.8). Then

E‘n(J{)p< HRn,rf_f”p‘
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conversely,

IRy oSS, <0020 5 (k4 1) B,

0<k<n

Proof. The first inequality is obvious. Concerning the second one, we
have to show the following Bernstein type inequality

1270, , < const, , n"[[Q,],.

where Q,, is a polynomial of order n.
In fact, if Q, is a polynomial of order n, we can write Q,, as

i 2 (k) Pel(x).

By the definition of 2", we get 27Q,(x)= — 37 _, (k(k+1))"> Q0 (k)
P, (x). Then the Bernstein type inequality is of the form

n n

2 0. (k) Py

k=0

)7 O (k) Py| <conmst, ,(n(n—1)7

p

p
This is Corollary 5.15 of [8]. The proof of Theorem 2 is complete.

By this theorem and Theorem 1 we have

THEOREM 3. Let feL,[ —1,1],1<p< oo, and let R, , [ be defined by
(1.8). Then

E,(f), <const, , K(f.n"" L, W?).

conversely,

C
KUn s Ly W) <20 S (e 1) Bul(f)
0<k<n
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